Influence of Nanoclay on Properties of HDPE/Wood Composites
نویسندگان
چکیده
Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-step melt compounding procedure with the aid of a maleated polyethylene (MAPE). The use of 2% clay decreased the crystallization temperature (Tc), crystallization rate, and the crystallinity level of the HDPE/pine composites, but did not change the crystalline thickness. When 2% MAPE was added, the crystallization rate increased, but the crystallinity level was further lowered. The flexural and tensile strength of HDPE/ pine composites increased about 20 and 24%, respectively, with addition of 1% clay, but then decreased slightly as the clay content increased to 3%. The tensile modulus and tensile elongation were also increased with the addition of 1% clay. The impact strength was lowered about 7% by 1% clay, but did not decrease further as more clay was added. The MAPE improved the state of dispersion in the composites. Moisture content and thickness swelling of the HDPE/pine composites was reduced by the clay, but the clay did not improve the composite thermal stability. 2007 Wiley Periodicals, Inc. J Appl Polym Sci 106: 3958–3966, 2007
منابع مشابه
Nanofiller Reinforcement Effects on the Thermal, Dynamic Mechanical, and Morphological Behavior of Hdpe/rice Husk Flour Composites
Polymer nanocomposites reinforced with lower volume fractions of nanofiller have recently attracted steadily growing interest due to their peculiar and fascinating properties as well as their unique applications in commercial sectors. In this study, composites based on high density polyethylene and rice husk flour with different loading of nanoclay were fabricated in an internal mixer. The infl...
متن کاملBamboo–Fiber Filled High Density Polyethylene Composites: Effect of Coupling Treatment and Nanoclay
High density polyethylene (HDPE)/bamboo composites with different nanoclay and maleated polyethylene (MAPE) contents were fabricated by melt compounding. The compounding characteristics, clay dispersion, HDPE crystallization, and mechanical properties of the composites were studied. The equilibrium torque during compounding decreased with use of clay masterbatch and increased with the addition ...
متن کاملChelating efficiency and thermal, mechanical and decay resistance performances of chitosan copper complex in wood-polymer composites.
Wood-polymer composites (WPC) have been extensively used for building products, outdoor decking, automotive, packaging materials, and other applications. WPC is subject to fungal and termite attacks due to wood components enveloped in the thermoplastic matrix. Much effort has been made to improve decay resistance of WPC using zinc borate and other chemicals. In this study, chitosan copper compl...
متن کاملEffects of Fungicides on Mold Resistance and Mechanical Properties of Wood and Bamboo Flour/High- Density Polyethylene Composites
The main objective of this study was to determine the mold resistance and mechanical properties of fungicide-treated wood and bamboo flour/high density polyethylene (HDPE) composites. Zinc borate (ZB), 4,5-dichloro2-octyl-isothiazolone (DCOIT), zinc pyrithione (ZPT), and carbendazim (MBC) were used as fungicides. Then, treated and untreated samples were exposed to mold fungi (Aspergillus niger,...
متن کاملWood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).
High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously incr...
متن کامل